High-to-Low CO2 Acclimation Reveals Plasticity of the Photorespiratory Pathway and Indicates Regulatory Links to Cellular Metabolism of Arabidopsis
نویسندگان
چکیده
BACKGROUND Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO(2)-enriched air for normal growth. Several studies indicate that this CO(2) requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO(2) and their alteration during acclimation of wild-type plants and selected photorespiratory mutants to ambient air. METHODOLOGY AND PRINCIPAL FINDINGS The wild type and four photorespiratory mutants of Arabidopsis thaliana (Arabidopsis) were grown to a defined stadium at 1% CO(2) and then transferred to normal air (0.038% CO(2)). All other conditions remained unchanged. This approach allowed unbiased side-by-side monitoring of acclimation processes on several levels. For all lines, diel (24 h) leaf growth, photosynthetic gas exchange, and PSII fluorescence were monitored. Metabolite profiling was performed for the wild type and two mutants. During acclimation, considerable variation between the individual genotypes was detected in many of the examined parameters, which correlated with the position of the impaired reaction in the photorespiratory pathway. CONCLUSIONS Photorespiratory carbon metabolism does not operate as a fully closed pathway. Acclimation from high to low CO(2) was typically steady and consistent for a number of features over several days, but we also found unexpected short-term events, such as an intermittent very massive rise of glycine levels after transition of one particular mutant to ambient air. We conclude that photorespiration is possibly exposed to redox regulation beyond known substrate-level effects. Additionally, our data support the view that 2-phosphoglycolate could be a key regulator of photosynthetic-photorespiratory metabolism as a whole.
منابع مشابه
Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability.
The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic organisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient CO2 concentrations, we demonstrate that photo...
متن کاملIntegrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3- Uptake Mutant of Synechocystis sp. PCC 6803.
Cyanobacteria have efficient carbon concentration mechanisms and suppress photorespiration in response to inorganic carbon (Ci) limitation. We studied intracellular Ci limitation in the slow-growing CO2/HCO3 (-)-uptake mutant ΔndhD3 (for NADH dehydrogenase subunit D3)/ndhD4 (for NADH dehydrogenase subunit D4)/cmpA (for bicarbonate transport system substrate-binding protein A)/sbtA (for sodium-d...
متن کاملHigh serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis
Serine:glyoxylate aminotransferase (SGAT) converts glyoxylate and serine to glycine and hydroxypyruvate during photorespiration. Besides this, SGAT operates with several other substrates including asparagine. The impact of this enzymatic promiscuity on plant metabolism, particularly photorespiration and serine biosynthesis, is poorly understood. We found that elevated SGAT activity causes surpr...
متن کاملIsotopically nonstationary C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation
Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has be...
متن کاملAn Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport.
Reactions of the photorespiratory pathway of C(3) plants are found in three subcellular organelles. Transport processes are, therefore, particularly important for maintaining the uninterrupted flow of carbon through this pathway. We describe here the isolation and characterization of a photorespiratory mutant of Arabidopsis thaliana defective in chloroplast dicarboxylate transport. Genetic anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012